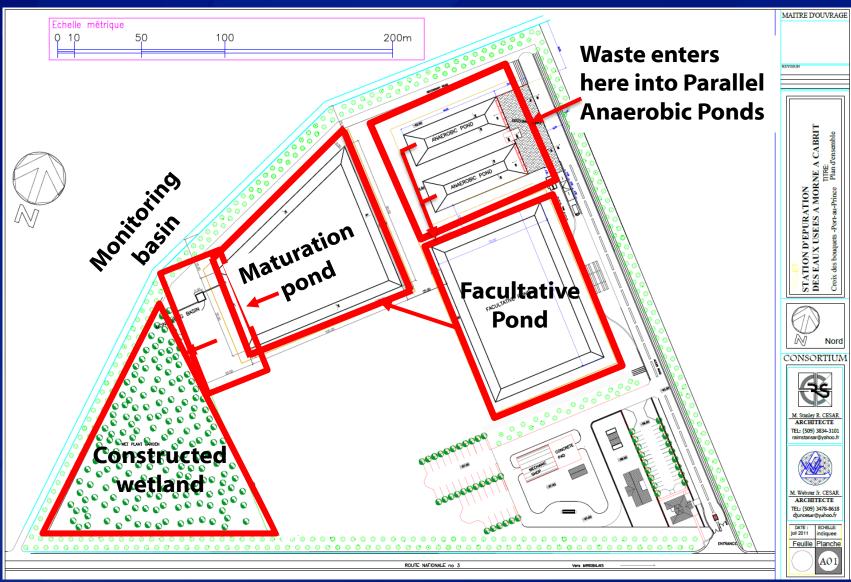
DRAFT

Effects of Fecal Sludge in Wastewater Stabilization Ponds: Port-au-Prince, Haiti

Rick Gelting, Ph.D., P.E.

Emergency Response and Recovery Branch
Center for Global Health
Centers for Disease Control and Prevention



Overview

- Evaluation of Wastewater Stabilization Pond at request of Haitian National Water and Sanitation Directorate (DINEPA)
- Design largely based on sewage (wastewater)
 - but with higher BOD₅ design value
- All waste trucked to site (fecal sludge)

Morne à Cabri Wastewater Lagoon

Influent Fecal Sludge

Fecal Sludge

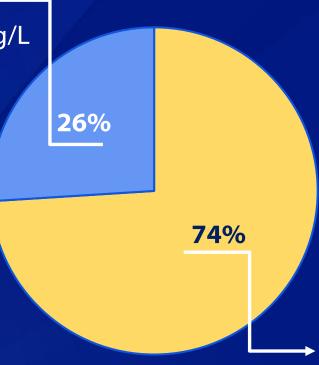
 All waste emptied from on-site sanitation facilities that has not been transported through a sewer network

Pumper Trucks

- Mostly septic tanks
- Approximately 75% of influent

Barrel Trucks

- Mostly latrines
- Approximately 25% of influent
- Highly variable strength of fecal sludge coming from pumper trucks and barrel trucks



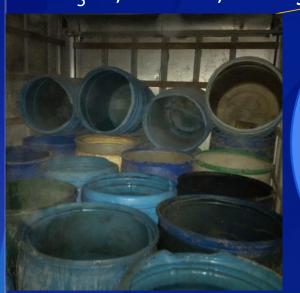
Results: Influent Fecal Sludge

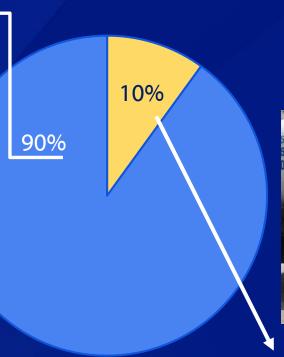
Volumetric Loading

Barrel Trucks ← BOD₅: 5,160 – 40,000 mg/L

Pumper Trucks

BOD₅: 252-3,228 mg/L


 BOD_5 for typical sewage = 200 - 400 mg/l


Results: Influent Fecal Sludge

BOD₅ Volumetric Loading

Barrel Trucks

BOD₅: 5,160 – 40,000 mg/L

Pumper Trucks

BOD₅: 252-3,228 mg/L

Total Weighted Average, using geometric mean:

 $BOD_5 = 4,059 \text{ mg/L}$

Volumetric BOD₅ Loading Rate Estimates

	Actual (Estimated)	Design
Influent BOD ₅	4,059 mg/l	1 _, 500 mg/L
Daily Flow	160 m³/day	500 m³/day
Anaerobic Pond Volume	3780m³*	3780m ³
Volumetric Loading Rate	171 g/m³/day	198 g/m³/day

^{*} Actual volume decreases over time with sludge accumulation

While the volume of fecal sludge entering the system is less than a third of the design flow, the volumetric loading rate is approximately at capacity due to high strength of waste coming into facility

Percent Reduction of BOD₅ and other parameters

Sampling Location	BOD ₅ *	Design Value for BOD ₅	COD	TN	TP	TSS
Anaerobic pond 1	86%	70-85%	79%	81%	78%	86%
Anaerobic pond 2	51%	70-63%	8.0%	58%	42%	18%
Facultative pond	56%	73-87%	82%	66%	65%	89%
Maturation pond	72%	25%	8.0%	59%	60%	31%
Overall	98%	97%	96%	97%	97%	99%

^{*} Influent data taken from all 3 sampling events, but the other treatment process units were only taken from Nov. 2014 sampling event

Challenges with Fecal Sludge

Accumulation of solids

- Decreases the effective treatment volume and retention time
- Requires increased maintenance and occasional shut down for sludge removal
- BOD₅ reduction in facultative pond lower than expected design value
 - Sludge accumulation
 - Ammonia production

Conclusion

- Reduction of BOD₅ and other key parameters meets overall design targets; however, system is near capacity due to high-strength fecal sludge from latrines
- More investment needed for fecal sludge management
- More research needed to better understand how highstrength waste affects treatment in wastewater lagoons
- Routine monitoring of system is needed in country
 - Construction of wastewater lab planned

Special Thanks

- Centers for Disease Control and Prevention
 - Andrea Martinsen
 - Jean Allain Darius
 - Dr. Vince Hill
 - Amy Kahler
- National Directorate for Potable Water and Sanitation
 - Edwige Petit, Sanitation Director
 - Myrline Mompoint, Sanitation Department
 - Pierre Ricky Constant, Morne a Cabri Manager
 - Staff at Morne a Cabri facility who helped with sampling

THANK YOU QUESTIONS?

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333

Telephone: 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348

E-mail: cdcinfo@cdc.gov Web: www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

